Simpson and Boole Rules (Higher-Order Integration)
These rules use higher-degree polynomials to approximate the integral with greater precision.
Simpson's Rule (1/3) - 3 points
Based on parabolic interpolation. Let \(x_0=a, x_1=a+h, x_2=a+2h=b\), where \(h = (b-a)/2\).
Derivation: Using Taylor expansion centered at \(x_1\) and integrating: $$ \int_{x_0}^{x_2} f(x) dx = \frac{h}{3}[f(x_0) + 4f(x_1) + f(x_2)] - \frac{h^5}{90}f^{(4)}(\xi) $$
Simpson's 3/8 Rule (4 points)
\[ \int_{x_0}^{x_3} f(x) dx = \frac{3h}{8}[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)] \]
Boole's Rule (5 points)
\[ \int_{x_0}^{x_4} f(x) dx = \frac{2h}{45}[7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4)] \]
6-Point Formula
\[ \int_{x_0}^{x_5} f(x) dx = \frac{5h}{288}[19f(x_0) + 75f(x_1) + 50f(x_2) + 50f(x_3) + 75f(x_4) + 19f(x_5)] \]