SOR (Successive Over-Relaxation)
To understand SOR, we must revisit eigenvalues and eigenvectors.
Eigenvalues
Eigenvalues are identity markers for equation systems that indicate stability. An eigenvector is a vector that, when multiplied by the system matrix, results in a vector parallel to the original.
To calculate eigenvalues (\(\lambda\)), we must find the determinant: \(\det{(A-\lambda I)} = 0\).
Eigenvalue Calculation
Consider the matrix \(A\):
Find the determinant of:
Expanding the determinant:
Eigenvalues: \(\lambda_1 = 0, \lambda_2 = 3, \lambda_3 = 2\).
Spectral Radius \(\rho(T_j)\) and Relaxation Factor \(\omega\)
The spectral radius of the iteration matrix \(T_j\) is defined as:
We need to find the optimal relaxation constant \(\omega\):
- If \(\omega = 1\): The method is Gauss-Seidel.
- If \(\omega < 1\): Under-relaxed system.
- If \(1 < \omega < 2\): Over-relaxed, implies faster convergence.
The SOR Method
SOR is a damped iterative method defined as:
Full Example
Let \(A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{bmatrix}\) and \(b = [4, 1, 1]^t\).
-
Equations: \(x_1 = \frac{1}{3}(-x_2 + x_3 + 4)\) \(x_2 = \frac{1}{4}(-2x_1 + x_3 + 1)\) \(x_3 = \frac{1}{5}(x_1 - 2x_2 + 1)\)
-
Matrix \(T_j\): \(T_j = \begin{bmatrix} 0 & -1/3 & 1/3 \\ -1/2 & 0 & 1/4 \\ 1/5 & -2/5 & 0 \end{bmatrix}\)
-
Spectral Radius: \(\rho(T_j) \approx 0.486\).
- Relaxation Factor: \(\omega \approx 1.0672\).
- Iteration 1 (\(x^0 = [0, 0, 0]\)):
- \(x_1^1 = 1.0672[4/3] + (1-1.0672)\cdot 0 = 1.4229\)
- \(x_2^1 = 1.0672[(-2.8458 + 0 + 1)/4] + (1-1.0672)\cdot 0 = -0.4925\)
- \(x_3^1 = 1.0672[(1.4229 + 0.985 + 1)/5] + (1-1.0672)\cdot 0 = 0.7274\)
Partial Exam Bonuses
Given the system: $$ \begin{align} 4x_1 + 3x_2 &= 24 \ 3x_1 + 4x_2 - x_3 &= 30 \ -x_2 + 4x_3 &= -24 \ \end{align} $$
- Diagonally Dominant:
- Row 1: \(4 \ge 3\)
- Row 2: \(4 \ge 3 + 1\) (Equality)
-
Row 3: \(4 \ge 1\) It is diagonally dominant.
-
Positive Definite:
- \(\det(A_1) = 4 > 0\)
- \(\det(A_2) = 16 - 9 = 7 > 0\)
-
\(\det(A) = 4(16-1) - 3(12) = 47 > 0\) It is positive definite.
-
Spectral Radius and \(\omega\): \(T_j = \begin{bmatrix} 0 & -3/4 & 0 \\ -3/4 & 0 & 1/4 \\ 0 & 1/4 & 0 \end{bmatrix}\) Finding \(\det(T_j - \lambda I) = -\lambda^3 + \frac{5}{8}\lambda = 0 \implies \lambda^2 = 5/8\). \(\rho(T_j) = \sqrt{0.625} \approx 0.7906\). \(\omega = \frac{2}{1+\sqrt{1-0.625}} = 1.239\).
-
Iterations (\(x^0 = [0,0,0]\)):
- \(x_1^1 = 1.239[6] = 7.434\)
- \(x_2^1 = 1.239[(-3\cdot 7.434 + 30)/4] = 2.384\)
- \(x_3^1 = 1.239[(2.384 - 24)/4] = -6.696\)